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ABSTRACT

Aarge-scale ocean slopes hav2 continental-slope dimensions (e.g.,

slope inclinations exceeding 1 for relief of 2000 m). Approximately

40% are related to continental margins, 40% to features with oceanic

crust, and 20% to unknown origins or overlap with the first two groups.

Of the slopes, 75% are laterally continuous (lateral slopes), and the

remaining 25% form the sides of conical-shaped features.

Groupings and ranges have been established for the following lat-

eral slope parameters: ocean section, top boundary province, bottom

boundary province, relief, slope angle, surface-sediment grain size,

plate-tectonic association, shape, outcrop type in the upper 200 m,

percent of slope with outcrop, sediment thickness, and basement type.

Mapping and computer adaption of parameter compilations reveal global

data distributions, global averages, parameter relationships, and

applied classification methods. Global averages are 3.8' for slope

angle, 3035 m for relief, and 38% for percent of slope with outcrop.

Strongest relationships occur among top boundary province, bottom

boundary province, plate-tectonyc association, and surface-sediment

type.

Preferred clustering of parameter relationships reveal four model

groups for lateral slopes. Group I centers around strong association of

broad shelves, rises, and divergent plate-tectonic association. Group

II includes high-relief slopes associated with subduction and high-angle

slopes associated with translation. Group III containe the slopes of

oceanic features and carbonate surface sediments. Group IV, the

smallest group, includes outer trench walls.

I.



INTRODUCTION

Objectives

The motivation for this thesis is the absence of a comprehensive

evaluation of the shallow geology of large-scale ocean slopes. The

objective is to define the ranges, groupings and relationships of data

which describe morphology, sedimentation and shallow geological struc-

ture associaced with all ocean slopes having continental-slope dimen-

sions. This objective is achieved as follows:

1. Geometric criteria are defined.

2. Geographic slope areas are mapped.

3. Data are identified and evaluated to define groupings and

ranges.

4. Selected data are shown on maps and graphs.

5. Interpretations and conclusions are formulated from the

compilations.

Background Studies

Large-scale ocean slopes include the vast majority of continental

slopes, the slopes of many Intra-oceanic features (often of unknown

origin), most slopes associated with island arcs, ocean volcanoes, and a

small proportion of the total extent of fracture zones and ridge-crest

features. Although no available studies characterize the geology for

the total range of slopes, various studies explore specific aspects.

1;
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The most comprehensive studieg deal with continental slopes (e.g.,

Dietz, 1964; Emery, 1950, 1968, 1977, 1979; Lewis, 1974; Bouma, 1979;

Dickinson and Seely, 1979). These studies relate continental slopes to

continental margins and stress thc interplay of shelf, slope, and rise

in the evolutionary development of the margin. Such an approach gives

an overview of possible continental slope environments.

Descriptive elements of slopes were revealed in previous studies.

Dietz (1964) stressed the association of slopes to the original tectonic

formation of a continental margin, to the sedimentary strata, and to

recent modification by erosion and deposition. Lewis (1974) implied

that slope shapes tend to be prograded when associated with large sedi-

ment input and/or narrow shelves. Emery (1979) presented a comprehen-

sive worldwide classification of continental margins based on an exten-

sive review of seismic profiles. It can be inferred from his study that

continental slopes are associated with tectonic origin of the margin,

tectonic and sedimentary dams, the intensity of recent sedimentation,

the influence of recent sedimentary processes, and the morphological

provinces which border the upper and lower boundaries of the slopes.

Dickinson and Seely (1979) presented evolutionary models for

geological features associated with subduction zones. These features

consist of fore-arc regions, outer trench slopes, back-arc slopes and

remnant arcs. They are associated with some of the most extreme slopes

in the oceans. The term "continental slope" was found to be ambiguous

in classifying these large-scale ocean slopes, because associated mar-

gins may or may not consist of true continental crust.

In their evolutionary models for intra-oceanic features, Carlson

and others (1980) pointed out additional ambiguities in the definition

!
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1. of continental slopes. Crusts of intra-oceanic features are continent-

al, oceanic, or umknown, and larSe-scale slopes often occupy the flanks

of these features. It is difficult to classify these slopes as conti-

nental slopes because intra-oceanic features are anomalously small as

compared to continents, their tops generally have little or no exposed

land, and their crust may not be continental.

Conical ocean features Include seamounts, ocean islands, guyots and

atolls. Seamounts are submerged volcanoes; ocean islands are volcanoes

exposed above sea level; guyots are volcanoes once exposed and eroded to

the wave-base and later submerged; and atolls are volcanoes with reef

caps (Menard and Ladd, 1963). This established grouping is somewhat

irrelevant in classifying slopes because its basis concerns the nature

of the top of the feature. Nevertheless, some generalizations can be

made. The shallow structure of the slopes is dominated by the presence

of basaltic basement because slopes are the sides of volcanoes. Guyots

tend to have more abrupt boundaries between the upper slopes and top

provinces than do seamounts. Islands may contribute terrigenous sedi-

ments to the slopes; however, the amount is usually small. The carbonate

cap on atolls ranges from tens of meters up to 1400 meters for Eniwetok

(Menard, 1964), and the slope angle for the cap is usually very steep.

Also, reef carbonates are a source of slope sediment.

Other slopes underlain by oceanic crust are fracture zones, high

relief ridge crest features, and certain carbonate banks. These slopes

are not numerous and generally overlap with slopes of conical features.

It is apparent that slopes evolve from diverse origins and that

evolutionary classifications are too generalized to produce complete

descriptions. However, insight may be gained by use of descriptive
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associations of slopes to plate-tectonic origin, sedimentary history and

structural development. ConsequenLly, it is important to extract analy-

tic elements of studies so as to characterize slope regions.

Definition of Shallow Geology on Slopes

The shallow geology of slopes includes aspects of morphology,

sedimentation and tectonics associated with the upper 500 m of slope

materials beneath the slope surface. It is extemely complex because of

the vast range of geological enviionments, processes, and ages of rocks

and sediments. The types of available geological data are voluminous,

and selectivity is necessary to make realistic compilations. For this

reason, shallow geology in this study is biased to best represent a

primary motive, the characterization of slopes according to their

acoustic response. The following list outlines some guidelines:

1. The primary concern is to define morphology and material fromi

the sediment-water interface to a depth of 200 m. Less emphasis is

placed upon deeper material.

2. Definition of slope materials should correlate with acoustic

velocity data.

3. Data parameters must be adaptable to generalization for the

entire water-depth range of the slope and for a lateral slope length of

about 100 km.

A wide range of geologic3l phenomena were explored. Data

concerning average slope angle, total relief, slope shapes, border

provinces, surface-sediment type, grain size and sedimentary processes

were compiled to define the acoustic interaction with the sediment-water
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interface. Sedimentary rocks, crystalline basement, and other high

velocity materials were identified as to their depth, frequency and rock

type. Certain sedimentary units such as diapirs or deformed sedimentary

rocks are identified and can be used to imply tectonic association.

Finally, plate-tectonic associations are identified to infer tectonic

influences on shallow slope materials. In other words, the shallow

geology presents a very generalized picture of the physical elements of

the slope environment and disregards much of the stratigraphy and

structural geology except where related to outstanding acoustic

response. This approach works well for characterizing the worldwide

extent of slopes because the necessary descriptive data are obtainable.

Selection of Large-Scale Ocean Slopes

Designation of slope areas is based upon geometric criteria of

average slope angle and relief. A large-scale ocean slope is defined as

an ocean bottom which has an average slope of at least 1* for a minimum

relief of 2000 m (Figure 1). Slope areas were mapped from unpublished

U.S. Naval Oceanographic Office (NAVOCEANO) bathymetry maps of a scale

of 1"I* longitude (see Map I for slope locations). As a first step,

contour spacings were examined to find steep areas exceeding 2000 m.

For areas with acceptable relief, average slopes were measured for their

steepest 2000 m relief range. If average slopes were found to exceed 10

inclination, the area was designated as a large-scale ocean slope.

Finally, all sloping areas up-slope and down-slope to the 2000 m range

were measured to include all sections which met the slope criteria.
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FIGURE 1. Geometric classification of large-scale ocean slopes. Slopes

that have average inclination of greater than 1 for 2000 a

relief were designated study areas. Lateral and conical

slopes were defined on the basis of the size of the top-of-

slope province.
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Map I depicts the geographic distribution of large-scale ocean

slopes which meet the slope criteria. The map establishes a geographic

base on which to compile geological data.

Lateral and Conical Slopes

Visual inspection of the distribution of slopes (Map I) reveals an

obvious discontinuity in their occurrence. Intra-oceanic areas contain

significant quantities of seamounts, islands, guyots, and atolls.

Because these features are approximately cone-shaped, slopes which form

their sides are designated conical slopes. On the other hand, most

continental slopes and slopes associated with oceanic plateaus and

ridges extend laterally for great distances. These slopes are called

lateral slopes. As defined for this study, conical slopes have a

largest top-of-slope dimension of less than 100 km, and tops of lateral

slopes have larger dimensions (Figure 1). The division of conical and

lateral slopes is necessary for Lhe following reasons:

I. As determined by lateral continuity, the geometries of conical

and lateral slopes are different. An analogy is comparison of a

mountain to a ridge.

2. The geometric divisiou between lateral and conical slopes

involves little overlap.

3. The geology of conical slopes (mostly volcanoes) is quite

different than that of lateral slopes (mostly continental margins).

4. Geologic and bathymetriz data concerning conical slopes are

much sparser than for lateral slopes.
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5. No reasonable method cotld be devised to include conical slopes

in a data base with lateral slopes.

The distances along slopes were measured to derive the quantity of

both conical and lateral slopes. Distances along lateral slopes were

measured parallel to the intermediate depth contour of the slope.

Measurement of conical slopes was more complicated. Conical features

were assumed to resemble true cones. Bracey (1981) measured randomly

selected basal sections of North Atlantic and North Pacific seamounts.

From his data, the average radius of a basal section was calculated for

a world average seamount. By using one-half this basal radius the

author calculated a circumference for a cone halfway between the apex

and the base. This average circumference was multiplied by the number

of conical features found in each ocean section (Table I, part a). The

resulting conical distances for each ocean section can be compared to

the lateral slope distances.

Table I shows the equivalent distances of lateral and conical

slopes for the total world oceans and by ocean sections (see Figure 2

for outlines of ocean sections). Lateral slopes generally outnumber

conical slopes by 3 to 1. Whereas the North Pacific has the highest

percentage of conical and combined slopes, the Indian Ocean has the

highest percentage of lateral slopes and second highest of combined

types. The South Pacific has the third highest percentage for each of

conical, lateral, and combined slopes. The remainder of the ocean

sections collectively have less than half the percentage for any slope

type.
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COMPILATIONS OF LATERAL SLOPES

For this study, a compilation consists of a collective geologic

topic which characterizes all lateral slopes by various groupings which

best exhibit the topic's variation. A compilation Involves formulation

of a collective topic, grouping of the topic, and finally assigning the

grouping scheme to the geographic extent of lateral slopes. Several

compilations were completed in this section, and their products are

world maps which depict various data groupings for geologic topics.

These are average slope, surface-sediment type, and plate-tectonic

associations of slopes. Other compilations were relegated to the data

base section for geographic representation and only the grouping schemes

are presented In this section. A third group of compilations consists

of those topics which are not suitable to worldwide mapping because of

the scale of study or the lack of worldwide data. These compilations

are presented as discussions and are omitted from the data base

sections.

Compilations are presented to characterize the geology of a thin

layer of material found on large-scale ocean slopes. They are grouped

according to morphology, surface sediments, and shallow structure.

Efforts were made to quantify groupings, to stress compilation of data

which relate to geometry of slopes, and to define physical properties of

geologic features.
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Morphology

Morphology is the geometry of the interface between the ocean bot-

tom and the water column. Several parameters were chosen to character-

ize morphology. Average slope angle and total relief define the numeri-

cal dimensions of slopes. With addition of a slope shape, the subtle

variations of slope angle and secondary topography become apparent.

Finally, definition of boundary provinces reveals the geometric rela-

tionship of the slope to its upper and lower extremities.

Average Slope Angle

Characterization of slopes by average slope angle requires a fixed

relief range. Shepard (1973) measured average slope angle for various

worldwide locations of continental slopes by fixing the relief at 1800 m

and disregarding the intermediate-relief topography. A similar method

was used in the present study; however, 2000 m relief was used and the

steepest sections of ocean slopes were measured. Average slope measure-

ments were compiled from NAVOCEANO bathymetry at a scale of 1" - 1"

longitude (over 10 x the scale of Map I). Slope regions were outlined

at this scale by using the slope criteria.

Slope areas were grouped according to average slope-angle ranges

(Map I). Measurement of slope angles was based upon contour spacings

which decrease exponentially with increasing slope angles. A logarith-

mic grouping is used: 1-2, 2-4. 4-8, greater than 8.
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Total Relief

Although average slope ang]e applies only to the steepest 2000 m,

total relief is a measure of the entire slope. Total relief values were

calculated by subtracting the shallowest depth from the deepest, and

data were tabulated in incremental 1000 m ranges. In general, the

higher-relief slopes have the greater chance of having steeper slopes

because a higher relief creates more 2000 m options.

Shapes of Slopes

Slope shape is a relative measure of the variability of slope

angles and secondary topography. Designation of shape geometries is

highly subjective. The grouping scheme is defined using both relative

and quantitative criteria. Shape types (Figure 3) were developed

according to three major guidelines:

1. The shape types should reflect geological shape models proposed

in the literature.

2. A roughness (secondary topography) scale should be implemented

into the classification.

3. Individual shape types should characterize existing slope

shapes as determined by analysis of the profile compilation

(Appendix II).

The relative configurations and roughness groupings are illustrated in a

complete classification of shape slopes (Figure 3). The ranges used to

specify groups are absolute, atd any slope profile can be assigned to

only one group.
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FIGURE 3. Slope shapes. The classification io based upon the relative

variability of slope angles A'nd bottom roughness.
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Slope Shapes

Typo

Sigmoidal Smooth.
Convex Upper slope. no roughness >2 00m Wol

2 Sigmoidal Rough-
Convex upper slope, roughness 2 00-1000m
relief present.

3 Abrupt Smooth-
Concave upper slope, no roughness > 200m relief.

4 Abrupt Rough-

Concave upper slope, roughness 20 0 -1000m
relief present.

5 Complex-

*PIO0Qm but -C2000m relief of anomalous topography.

6 Step-

Steps (2000m relief Intetupt a continuous slope

7 High Relief Step
Inidividual slopes with relief >2OOrm stperated
by flat intraslope region.

8 -High Relief Complex
Individual slopes with relief )2000mn seperated
by trough.

Scale K

KM[ Ve ~~ rtical Exaggeration X 10
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Previous geologic studies pointed out elements of slope shapes

which prove useful in formulating a worldwide classification. Shape

models were proposed for progradlng slopes (Sangree and others, 1978),

fore-arc slopes (Dickinson and ;eely, 1979), and continental slopes

(Emery, 1979). All these models are highly qualitative; nevertheless,

some basic ideas were adopted. Shape Lypes 1 and 2 (Figure 3) differ

from types 3 and 4 in that the former have convex upper slopes and the

latter have concave shapes. Sangree and others (1978) suggested that a

convex shelf-slope break infers prograded sediment in a low-energy envi-

ronment, and the concave break infers a high-energy environment. Convex

slopes were also implied by the occurrence of a trench-slope break for

simple fore-arc slopes (Dickinson and Seely, 1979). Similarly, the

convex shape characterizes many seamount shapes (Bracey, 1981) as well

as other slopes which have higher than average slope angles (Stanley,

1975). In a very diagrammatic representation of continental slopes,

Emery (1979) suggested that mature prograded slopes best resemble the

type 1 shape, whereas initial, youthful and truncated mature slopes

resemble types 2, 4 or 5. High-relief slope shapes often exhibit

multiple shapes (Types 7 and 8), and these shapes best resemble the

complex fore-arc slopes (Dickinson and Seely, 1979).

Characterization of bottom roughness was arbitrarily assigned to

the shape types (Figure 3). A scale of increasing relief of the maximum

bottom roughness correlates with the type sequence of 1 and 3 (lowest

roughness) to 2 and 4 (medium roughness) to 5 (highest roughness). Each

roughness grouping has definite relief intervals so that a shape can be

measured and categorized without ambiguity. Types 6-8 were not included

in the roughness scheme. Types 6 and 7 have step-like roughness with no
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measurable relief. Types 7 ard 8 have highest roughness in that the

secondary topography reaches t.ie dimensions of the primary shapes of

other slopes.

Boundary Provinces

Lateral slopes are elongate geographic areas which connect with

shoal areas at the top of the slope and deep areas at the bottom. The

geometric forms of the boundaries are flat or slightly inclined tops of

variable width, and a variety of bottom shapes such as depressions, flat

areas, or a gently inclined area. Terms which generally describe these

areas are shelf, ocean plateau, rise, trench, and trough. The list is

neither adequate to describe all types of boundary provinces, nor is it

totally geometric in its approach because sedimentary and tectonic proc-

esses are implied. For this reason, boundary provinces were defined ac-

cording to basic geometric form and genetic inferences were disregarded

except where specified.

Top boundary provinces were evaluated as to their size and depth.

Shelves were defined as the flat or gently inclined areas which

generally occur at depths of less than 300 m and connect with a land

mass. A narrow shelf was arbitrarily defined as less than 100 km wide

and a broad shelf as wider. This division crudely separates Pacific-

type shelves from those in the Atlantic. Where a land mass is exposed

with no obvious shelf top, the top was designated as island/no shelf.

An ocean plateau resembles a shelf, but it may occur at any depth and is

not connected with a significan, land mass. An ocean plateau may occur

in intra-oceanic regions at very shallow depths or at a continental

margin at minimum depths of greater than 300 m. The shortest top
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dimension of an ocean plateau must exceed 100 km. If the top dimension

is less than 100 kin, the no-top classification was assigned to the fea-

ture which is typically a seamount.

Bottom provinces were evaluated according to shape and slope

inclination. A rise connotes a sediment wedge; however, the definition

used here is a gently inclined slope at the base of the primary slope

province. Where slope bottoms into a flat province, the bottom province

was designated as a no-bottom classification. The final two bottoms,

trench and trough, are similar in that both are depressions. The defi-

nition of a trench is not purely geometric. All depressions associated

with obvious subduction zones were designated as trenches. Trenches

usually have steeper and higher-relief slopes associated with the sea-

ward side of the depression than troughs. Troughs are commonly found at

the base of oceanic features such as seamounts. All depressions which

are not associated with subduction or former subduction zones were des-

ignated as troughs.

Surface Sediments

Analysis of sediment lying near the water-sediment interface on

slopes is complicated. Ideally, surface sediments represent Holocene

sedimentary regimes for a particular geographic area. If sedimentation

rates are known, the thickness of the Holocene sediments can be calcu-

lated. In reality, slope sediments undergo a wide range of sedimentary

and tectonic processes such as mass movement, faulting, and erosion.

Surface sediments may be absent because of erosion or nondeposition.
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Bottom surfaces may be basement utcrop or surfaces of older sediments.

Surface sediments may vary in gr.in size and composition down slope.

An adequate representation of surface sediments is difficult to

compile considering the scale of this study. For the most part, surface

sediments should be Quaternary sediment. The compilation of surface

sediments (Map II) represents the average of variations with depth and

ignores the effects of local sedimentary processes. These topics are

inadequately studied worldwide and too variable over short distances to

be considered for worldwide compilations. However, they should never be

overlooked when evaluating a specific slope environment.

Average Type and Grain Size

The purpose of this compilation (Map I) is to standardize a world-

wide distribution of slope sediment data which can be adapted to a geo-

acoustic model. The sediment classification differentiates sediment

types which imply varying porosity and/or water content, in addition to

presenting the best available grain-size data. For the most part, sur-

face-sediment data were compiled from the geologic literature and many

aspects of the available data are unimportant for purposes of this

study. Extraction of needed data was often impossible. The compilation

used in this thesis leans heavily toward Soviet data because it is stan-

dardized and contains readily available bulk grain size and biogenic

fraction of surface sediments (Lisitzin, 1972, 1975, 1975a) (Anonymous,

1975) (Kort, 1970, 1970a). Data from western scientists generally can-

not be standardized because of the varied classification schemes and

scientific purposes. Consequently, the Soviet data forms the basis of
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the compilations and pertinent western studies were used to supplement

and check the Soviet base.

Major sediment types are terrigenous, biogenic, and nonbiogenic

pelagic sediments. Terrigenous sediments consist predominantly of ori-

ginally fluvial sediments; however, ice-rafted sediments are important

in polar regions, aeolian sediments in arid regions and volcanogenic

sediments near arcs (Llsitzin, 1972). Biogenic slope sediments are

dominantly pelagic, calcareous Foraminifera and nannoplankton. Ben-

thonic forams are common in lesser amounts and pteropods may occur in

warm climates at depths less than 3000 m. Siliceous sediments consist

of diatomaceous sediments in the high latitudes and radiolarian sedi-

ments in the equatorial regions, but siliceous sediments are rarely the

dominant sediment on slopes. Pelagic nonbiogenic sediments generally

have a higher water content than terrigenous sediments. A fourth group

is transitional between the biogenic and nonbiogenic components (see Map

II ).

It is difficult to formulate a standard grain-size grouping from

compiled data sources. Two major problems exist: correlation of grain

size distribution to mean grain size and correlation of the Soviet size

scale to the Wentworth-Udden scale used by western scientists.

Western studies generally describe grain size by a ternary diagram

which is a plot of grain-size dimtribution and a description term that

has quantitative boundaries (JOIDES, 1977). Mean grain size may be cal-

culated from a detailed size analysis. Unfortunately the two results,

mean grain size and the descriptive term, cannot be accurately related.

The only way to overcome this problem is to compare the detailed analy-

sis of available studies. This is beyond the scope of thie thesis.
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The Soviets, more so than western scienttsts, have collected

worldwide sediment data and have published crude ranges of each major

size division (Figure 4). Like the western phi scale, the Soviets use a

log scale; however, the groupings arc different from the Wentworth-Udden

system. Lisitzin (1972) correlated the Soviet scale with western grain

size usage. He linked ranges of mean grain size to Soviet distribution

maps and correlated the mean grain sizes to western terminology. In

Figure 4, the sediment groupings of fine-medium silt, fine silt and clay

correspond to western mean grain-size studies in phi terms. Correlation

of distributions to the mean grain-size data can be accomplished only by

assuming normal distributions and this occurrence is unlikely. On Map II

the most accurate groupings (fine silt and clay) are derived from the

Soviet data. The fine to medium silt group is partially inferred from

western studies (Scholl and others, 1968, Frazer and others, 1972).

The groupings which delineate surface-sediment groups can be cor-

related to velocity-ratio data (Hamilton, 1980). By plotting Hamilton's

mean grain-size ranges for each sediment type, one can assign velocity

ratios to slope sediments (Figure 5).

Small-Scale Variation

The large-scale sedimentary regime for a slope region is dependent

upon regional sediment source and climate (Lisitzin, 1972). For

example, terrigenous input for glacial regions is generally coarse

grained and immature, whereas a tropical river may transport fine

grained clays. Also, sparsity of terrigenous source may give way to

biogenic sediments (Lisitzin, 1972). Such concepts are displayed by the

surface sediment compilation (Map II).
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FIGURE 4. Comparison of grain-size schemes. Western size scales (phi,

Udden-Wentvorth) are compared to the Soviet scheme (pelite,

aleurite-pelite, and aleurite, Lisitzin, 1972), and to metric

scales.
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FIGURE 5. Velocity ratios for surface sediments. Velocity ratios are

determined by surface-sedijoent type and average grain size.

Adapted from Hamilton (1980).
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Numerous small-scale variations can radically alter the charac-

ter of the generalized surface sediments. Mass movement of sediment,

ubiquitous canyons and slope gullics, grain size and compositional vari-

ation down slope, and modification by bottom currents are recognized as

the most important sources of variption. These phenomena alco influence

the character of bottom morphology and the outcrop of older structure on

slopes. The small scale of these phenomena places the beyond the scope

of this study. Slope environments. are not mapped in sufficient detail

to reveal occurrence of all these variations. Consequently, it is

unrealistic to include their compilation. However, relationships are

recognized concerning the interaction of small-scale variation to other

slope parameters. For this reason, a brief summary is offered for each

major phenomenon.

Mass movement of sediment on slopes is dependent upon volume of

sediment supply, strength of the sediment, "triggering" by tectonic

movement, oversteepening by erosion of deposition and probably numerous

undetermined sources (Morgenstern, 1967). Because a variety of factors

cause mass movement, the occurrence of slumps, turbidites, or various

other types of movement are difficult to evaluate. For example, whereas

slumping has occurred on slopes of 10, sediment on slopes of up to 35*

may remain unmoved (Morgenstern, 1967).

Various types of mass movement have been studied (Lowe, 1979;

Nardin and others, 1979) and each type moves according to gravity and

momentum. As compared to movemen'_ in other ocean regions, intra-slope

movement is dominated by collapse and down-slope movement of relatively

undeformed sedimentary units called slumps or glides. These sedimentary

features are a large source of slope roughness. They are characterized
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by steep up-slope "scars" (which resemble escarpments In cross-section)

and down-slope knolls or talus piles which often have rotated but intact

bedding (Nardin and others, 1979).

Deposits caused by sediment flows are also important. Their place-

ment, however, is generally at the base of slopes or behind dam struc-

tures. Sediment flows can range from debris flows to turbidites (Nardin

and others, 1979) and they often result from initial slide processes.

Turbidites are most common on the floor of submarine canyons and on

rises. They result from slumping on intra-slope regions, erosional

slumping of canyon walls, or introduction of sediments at the canyon

head (Shepard and Dill, 1965).

Submarine canyons and slope gullies are common on slopes. They

form indentations of variable width, length and depth, and are a prime

source of bottom roughness. Various hypotheses attribute their origin

to erosional processes related to river sources or submarine sediment

slumping and turbidity currents (Shepard and Dill, 1966). They have

steep walls which often cut into the older structure of the slopes. Off

the east coast of the United States, most submarine canyon walls are

truncated sedimentary strata, whereas off the California coast, canyons

cut into crystalline rocks (Shepard and Dill, 1966). Canyons are recog-

nized as both active (with erosional walls and floored by turbidites)

and inactive (covered by a layer of recent pelagic or hemipelagic

sediment) (Shepard, 1981).

Major down-slope variations in sediment composition and grain size

are caused by distance from terrigenous source, lack of certain biogenic

production below photic zone depths, and dissolution of carbonate sedi-

ments below the carbonate compensation depth (CCD). Grain size generally
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decreases with depth for both carbonate and terrigenous sediments and

carbonate sediments dissolve below the CCD. However, the variations may

be overidden by mass movement processes and bottom currents.

A simplistic view of terrigenous sediment on continental margins

includes a sandy shelf, a silty slope and a clayey rise. The decrease

in grain size is attributable to distance from terrigenous sources

(Bouma, 1979). The same trend exists across slope regions where upper

slopes have coarser muds than lower slopes. MacIlvalne and Ross (1979),

for the New England slope; Krissek and others (1980), for the Peru

slope; and Murdma and Bezrukov (1970), for the Southern Kurile fore-arc

region; found somewhat linear decreases in grain size of terrigenous

sediments with depth on slopes. On the other hand, Doyle and others

(1979) and Keller and others (1979) found no variation for silty clays

recovered from the slope off the northeastern United States; however,

adjacent shelf and rise sediments were found to be coarser and finer,

respectively.

Carbonate sediments on slopes show similar down-slope trends for

different reasons. Except for the mass movement of sediments and occa-

sional shelf spillover, the predominant carbonate slope sediment is pel-

agic Foraminifera and nannoplankton (Moore and others, 1976; Scoffin and

others, 1980; Mullins and Neuman, 1979: Schlager and Chermak, 1979).

Average grain size of pelagic carbonates decreases linearly from about

0.03 m at 1600 m to less than 0.004 mm at 4000 m for sediments on the

gently inclined Ontong-Java Plat-eau (Johnson and others, 1977). This

trend coincides with a slight decrease in carbonate content. The

decrease in grain size evidently resulted from breakdown or dissolution

of pelagic tests.
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Carbonate surface sediments are absent below the CCD (Figure 6,

Berger and Winter, 1974). Sediments on the basal sections of slopes

below the CCD will have sedimeat compositions which reflect sources

other than those of pelagic carbonates. For example, equatorial regions

may have significant quantities of basal radiolaria and high latitude

slopes may have diatoms. Other areas may have hemipelagic sediments.

In the absence of any significant sediment source, red clay may be the

major surface sediment at the base of the slope.

Subduction processes may greatly alter the character of sediments

at the base of fore-arc slopes. In studying surface sediments from the

Oregon-Washington slope, Carson (1977) found overconsolidated and

dewatered sediments at the base of the slope and underconsolidated

sediments on upper slopes. He attributed tectonism due to subduction as

the cause of the anomalous basal sediments. If similar occurrences

exist for other fore-arc regions, it can be expected that subduction

z,)mplexes (Karig, 1977) will have anomalous sediment properties.

Modification of sediments by bottom currents may be an important

but variable influence upon surface sediment on slopes. Paths of bottom

currents are often unknown worldwide, but they are suggested by sediment

drifts near the base of slopes and scouring of slope walls, especially

for intra-oceanic features and constricted areas. Off the southeastern

coast of the United States, the Gulf Stream scours the slope wall off

the Blake Plateau (Emery and Uchupi, 1972). Bottom currents do not play

a major role in sedimentation for slopes off the northeastern United

States (Doyle and others, 1979).

Internal waves are suggested as another modifying source for slope

sediments (Bouma, 1979), but their effect is unsubstantiated. It is
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FIGURE 6. Depth of the Calcium Carbonate Compensation Surface. Adapted

from Berger and Winterer (1974).
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suggested that deposition occurs downslope and just upslope of the

breaking point. Erosion occurs further upslope.

Plate-Tectonic Association

A classification of slopes was implemented to indicate ongoing and

initial tectonic processes associated with plate tectonic theory (Map

111). Problems arising in formulating such a map include the lack of

definitive data worldwide and the lack of rigid groupings which totally

characterize one region as opposed to another. Consequently, speculation

and a priority scheme were implemented into the classification. The pri-

mary purpose of the map is to classify all lateral slopes as a distinc-

tive tectonic class so that the tectonic class can be contrasted with

other slope characteristics. Many ambiguities arise In defending the

scheme because slopes were implied to be associated with tectonic situa-

tions. Actually, slope characteristics may or may not be related to the

tectonic situation.

The major division in the classification scheme is the separation

of active and passive plate margins (Figure 7). Active-associated slopes

are slopes in Cenozoic-Mesozoic megasuture belts of the world where sub-

duction and translation are occurring (Anonymous, 1979). These regions

are characterized by mountain building, volcanism, and anomalous heat

flow. Areas outside the megasuture zones are not plate margins. A dif-

ferent scheme was used to classify slopes outside megasuture zones.

Such slopes include many slopes in ocean basins as well as those adja-

cent to continents. An arbitrary division was made to divide these two

major types of features. Although the division is not tectonically

----------
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motivated, it avoids the problem of the origin of i tra-oceanic fea-

tures. Figure 7 outlines the tectonic classification utilized on Map

III. The classification separates slopes according to their local

association with current plate tectonic activity. Major data sources

for this compilation are: Anonymous (1979), Emery (1979), Dickinson and

Seely (1979) and many papers listed in Appendix I.

Slopes in megasutures were first classified according to their

association to present plate movement (Anonymous, 1979). Slopes asso-

ciated with subduction are fore-arc regions, outer trench walls and

back-arc walls. Slopes associated with translation occur near active

strike-slip movement. In the past, many of these slopes were associated

with subduction (e.g., western Aleutians, Puerto Rican fore-arc region,

Burdwood Bank). Many slopes in megasutures are not associated with

presently-active plate boundaries. Such slopes are the apparent passive

slopes of small basins and remnant arcs.

Slopes located outside mega-sutures were divided into intra-oceanic

features and rifted continental margins. Rifted continental margins

have either translational or divergent origin.

Shallow Structure

Structure in the Top 200 m

Profiles shown in Appendix II were examined to characterize the

types of outcrop found in the upper 200 m of slopes. An outcrop is

defined as an acoustic horizon in the upper 200 m which indicates a

sbarp rise in acoustic velocity as compared to overlying or adjacent

reflections. In geological terms, an outcrop usually represents

A
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FIGURE 7. Plate-tectonic association of slopes. This classification

scheme distinguishes slopes associated with active plate

movement from those vlith passive association.
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crystalline or lithified rocks which lie unconformably beneath prograded

sediments or are exposed on a slope. The nature of the outcrop is

evaluated from papers listed in the bibliographies (Appendix I) and the

profiles.

Outcrops were identified as geological rock units, and the percent-

age of the slope with outcrop was measured. Major sedimentary outcrops

are deformed sedimentary rocks, truncated sedimentary rocks, diapirs and

reefs. Crystalline outcrops are both continental and oceanic rocks.

Acoustic basement refers to nondetermined high impedance outcrops. The

extent and type of outcrop were determined from profiles in Appendix II.

For the most part, only one outcrop was identified for a single profile.

However, oceanic crystalline basement often occurred simultaneously with

deformed or truncated sedimentary rocks. The extent of each outcrop was

noted in terms of percent of the total vertical axis.

Outcrop types have significant geological implications. The

presence of older structure near the surface of a slope indicates the

presence of unconformities, nondeposition or tectonism. The prograded

outcrop type indicates the absence of a significant near-surface out-

crop. Because minor unconformities are likely to be present on all

profiles, they were overlooked. Deformed sedimentary rocks (and sedi-

ment) compose what is referred to as a subduction complex (Karig and

Sharman, 1975). Truncated sedimentary rocks (and sediment) represent

exposed angular unconformities. Truncated units may be escarpments and

indicate current scour, tectonism, or extreme mass movement of sediment

(Emery, 1979; Shepard and Dill, 1966). Diapirs and reefs often form

sedimentary dams. For example, the lower slope of the Northern Gulf of

Mexico is formed by a salt wall called the Sigsbee Escarpment.
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Similarly, the Blake-Bahama Escarpment is a reefal dam (Emery and

Uchupi, 1972).

Various types of basement otitcrops were classified. Atoustic base-

ment is an unidentified acoustic horizon which Is the deepest horizon

observed on a seismic profile. Oceanic basement is either basinal crust

or pinnacle (oceanic volcanoes) structures normally situated at the base

of a slope. Pinnacle structures are often associated with trunucated or

dzormed sedimentary rock outcrops. Continental basement normally occurs

as a massive block which might underlie the total slope.

Total Sediment Thickness

Sediment thickness is a measure of the thickness of sediment and

sedimentary rock to a chosen basement datum. Measurement of sediment

thickness on slopes is very difficult for the following reasons:

1. Basement is rarely identified on seismic profiles.

2. Thickness is highly variable.

3. The slope is often near the boundary between continental and

oceanic type crust.

4. Seismic profiling across sloping bottoms is highly distorted by

vertical exaggeration and complex geology. Appearance of struc-

ture is often ambiguous.

Sediment thickness was measurable for only half the profiles in

Appendix II. Deepest observed basement datums are acoustic basement,

crystalline basement, diapirs, and reefs.
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DATA BASE FOR LATERAL SLOPES

The data base consists of -a tabulation of slope parameters in

computer-compatible format. Grouping is predominantly subjective; slope

areas are divided into equally-spaced stations.

Thirteen parameters were formulated from the slope compilations

(Tables II and III). Each parameter represents a geologic compilation

for all lateral slopes. The variation within each parameter is represen-

ted by a group of parameter classes. For example, surface sediment type

is a parameter. Its parameter classes are terrigenous, 30-50% carbonate,

greater than 50% carbonate, greater than 50% carbonate and biogenic sil-

ica, and pelagic clay.

Parameters were evaluated using either of two spacial schemes. For

parameters 1-8 (Table II) the lengths of all lateral slopes were divided

into 3125 equally spaced 100 km stations, and parameter class designa-

tions were assigned to each station. On the other hand, parameters 9-13

(Table III) were tabulated from 520 profiles (Appendix II) and parameter

class designations were assigned to stations which coincide with profile

locations (Map IV). Although only 17% of all stations have coincident

profiles, an attempt was made to use only those profiles which are

spacially representative of all lateral slope areas. Only one profile

could ve included for a single station. The dual nature of spacial

tabulation of data was treated as follows:

1. Stations with no profiles were evaluated for parameters 1-8

(Table II).

2. Stations which include profiles were evaluated for parameters

1-13 (Tables II and III).



41

TABLE 11. PARAMETERS 1-8

TABULATED PARAMETERS FOR 3125 EQUALLY SPACED 100 KM STATIONS

PARAMETER PARAMETER CLASS CARD 5 OF TOTAL
DESIGNATION"

I. Ocean Section* Indian 1 26
North Pacific 2 22
South Pacific 3 19
North Atlantic 4 11
South Atlantic 5 9
Medit. and Black Seas 6 3
Arctic 7 4
Antarctic 8 6

2. Top Boundary Shelf (>I00 km) 1 27
Province Shelf (<100 km) 2 22

Island 3 17
Ocean Plateau 4 20
No-Top Classification 5 14

3. Bottom Boundary RIse s1 34
Province Trench 2 18

Trough 3 it
No-Bottom Classification 4 27

4. Relief 2000 m 1 17
2001-3000 m 2 44
3001-4000 m 3 33
4001-5000 m 4
5001-6000 m 5 13
6001-7000 m 6
7001-8000 m 7
8001-9000 m 8
9001-10000 m 9

5. Slope Angle 1-2* 1 24
2-4* 2 31
4-8" 3 35
>80 4 11

6. Surface Sediment Terrigenous 1 38
Type 30-50% Carbonate 2 22

>50% Carbonate 3 34
>50% Carbonate and Blogenlc 4 4

Sili Ica
Pelagic Clay 5 3

7. Surface-Sediment No data 0 4
Grain Size Slit 1 13

Fine Slit 2
Clay 3 4

8. Plate-TectonIc Complex Forearc Reglont 1 11
Association Simple Forearc Reglont 2 8

Outer Trench Wall 3 3
Backarc Wall 4 2
Remnant Arc 5 1
Active Translation 6 7
Apparent Passive 7 II
Intr a-ocean Ic 8 22
Passive Divergent 9 28
Passive Translation 10 7

6 see Figure 2 for boundaries
e see Figure 9
t defined by Dickinson and Seely (1979)
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TABLE I!I. PARAMETERS 9-13

TABULATED PARAMETERS FOR 520 -UBLISHED SEISMIC AMD BATHYMETRIC PROFILES*

PARN4ETER PARAMETER CLASS CARD % OF TOTAL
DESIGNATION

9. Shape Slgmoldal Smooth 1 15
Slgmoldal Rough 2 29
Abrupt Smooth 3 10
Complex 4 14
Step 5 t0
High-Relief Step 6 7
High-Re ltf Complex 7 3
Abrupt Rough 8 12

10. Outcrop Type In Not DotermIned 0 18
the Upper 200 m No Outcrop (prograded Sod.) 1 16

Truncated Sod. and Sod. Rocks 2 15
Dlaplrs 3 2
Deformed Sod. and Sod. Rocks 4 21
Roof 5 2
Acoustic Basement 6 5
Crystalline Bloc, 7 4
Crystalline Plnnecles 8 4
Crystalline Plnnmcles and 9 5

Truncated Sed./Sed. Rocks
Crystalline Pinnacles and 10 7

Deformed Sed./Sed. Rocks

II. Outcrop Percent 0% 0 14
1-95 1 6
10-195 2 4
20-29% 3 7
30-39% 4 3
40-49% 5 5
50-59% 6 4
60-69% 7 4
70-79% 8 10
80-89% 9 1
90-100% to I
Not Determined It 40

12. Sediment Thickness Not Determined 0 50
0-200 m 1 10
200-400 m 2 7
400-800 m 3 4

4 0
1000-2000 m 5 2
>2000 m 6 1
500-1000 m 7 16
>1000 m 8 9

9 0
400-1000 m (Inclislve) 10 21
>1000 m (Inclusive) I1 12

13. Basem,t Type Not Determined 0 50
Dapirs 1 5
Reef 2 3
Acoustic Basement 3 32
Crystal line 4 8
OtepIrs and Acoutic Basement 5 1

see Appendix II for Profiles
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Any single slope station was characterized by a maximum of thirteen

parameter-class designations.

Data Format

Computer punch cards were used to record tabulated data. Each card

contains data for one station. Punched data include the station number,

the profile number (if a profile is present), and the parameter-class

designations. Figure 8 illustrates the card format for a station with a

corresponding profile. A total of 3125 cards comprise the data base.

Problems with the Data Base

When Judging the quality of data base findings and uses, the reader

should keep in mind several unresolved problems.

1. Only lateral slopes are evaluated in the data base; conical

slopes are not.

2. Two spacial schemes (stations and profiles) with unequal cover-

age are combined to offer representative sampling of lateral slopes.

3. Chosen parameters are assumed to represent valid slope charac-

teristics. Many other parameters which characterize slopes had to be

omitted because no practical application to the data base could be

realized.

4. The grouping of many parameters is subjective. Although exist-

ing geologic terminology determines some parameter classes, others were

defined by the author on the basis of inspection of the total range



44

FIGURE 8. Computer card format for recording data for a single station

on one punched card. Most tabulations are parameter class

card designations listed on Tables II and III. An index to

station locations is available on request. Card designations

of ocean section for profiles are: 0 for no profile, 1 for

Arctic, 2 for Antarctic, 3 for Mediterranean and Black Seas,

4 for East Atlantic, 5 for West Atlantic, 6 for East Pacific,

7 for West Pacific, and 8 for Indian. Ocean boundaries for

profiles and profile numbers are shown on Map IV.

The station tabulated on the figure is for Antarctic profile

17. The card designations indicate that the station is char-

acterized by a broad shelf at its top, a rise at its base,

relief of 200-3000 m, slope of 2-4, fine silt-size terrig-

enous surface sediment, a passive translation tectonic asso-

ciation, a sigmoidal smooth shape, no outcrop in the upper

200 m, and sediment thickness of 500-1000 m to acoustic

basement.
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of compilations. "Natural" grouping of slope characteristics is usually

unknown and impossible.

5. Great disparity exists in the quality and coverage of tabulated

data. Best data are for the North Atlantic and North Pacific, poorest

data for the Arctic and Antarctic. Data composing the surface-sediment

size compilation are unreliable and often impossible to standardize.

Only 50% of profiles (Appendix II) reveal definitive total sediment

thickness and deepest observed basement, 60% reveal outcrop frequency

and 82% reveal outcrop type.
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DATA BASE ANALYSIS

Analyses are based upon computer counting and sorting of slope ta-

tions and corresponding data distributions. Various data presentations

were constructed to define data distributions, to reveal relationships

among parameters, and to group parameters. Order of presentation is cum-

ulative in that later analyses in this section incorporate earlier ones.

Global Data Distribution

A distribution is the frequency of all parameter classes for a

group of stations. Distributions were formed by sorting occurrences of

parameter classes for all stations and counting the number of stations

assigned to each parameter class. Because the sum of parameter classes

for a single parameter always equals the global number of stations, fre-

quencies of parameter classes were represented by percentages.

The global distribution of parameter classes represents all lateral

slopes (Tables II and III). The distribution reveals the occurrence of

a variety of geological phenomena related to the world as a whole. For

example, the global distribution for slope surface-sediment type is 38%

terrigenous, 22% carbonate (30-50% CaCO 3), 38% biogenlc (>50% CaCO 3

and Si0 2 ), and 3% pelagic clay.

Plate I shows the global distribution of all combinations of two

parameter classes. Each single matrix for two parameters represents 100%

of all lateral slopes. Precise percentages are listed for the most fre-

quent combinations on Table IV, and these combinations are dominantly

representative of top province, bottom province, plate-tectonic associa-

tion and surface-sediment type.
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Numerical Scale Parameters

Four parameters chosen for tha data base consist of parameter-class

divisions which can be treated as numerical scales. These parameters

are average slope, relief, surface-sediment grain size and outcrop per-

centage. The presence of numerical scales opens a new dimension to data

analysis. First of all, the rarameter-class distributions might be eval-

uated as to their suitability foi statistical analysis. For the most

part, the sampling techniques used in this study are not precise enough

to warrant formal statistical analysis. In all cases, data were grouped

into ranges and averaged values were assigned to discrete parameter

classes. Because Chi square aaalyses of distributions always fall far

below acceptable levels for normal distribution, it is important not to

take the data beyond statistical limits.

Correlation coefficients (r) for combinations of numerical scale

parameters reveal significant positive correlation at the .05 level for

slope and relief, slope and outcrop frequency, and outcrop frequency and

sediment size (Figure 9). These correlations are very weak, and signifi-

cance of correlation is attributed to the large size of the populations.

The predictibility of one parameter from another correlated parameter is

similarly weak for all correlations. For example, the best-fit linear

regression equation for the strongest correlation (slope and relief)

accurately characterizes only 18% (r2) of all possible predictions.

The weakness of the correlations is attributed to the natural scatter of

the data as well as the sampling 'sethod of using ranges of data rather

than discrete values. Nevertheless, significant correlations do exist

and their presence warrants further geological investigation.
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TABLE IV. MOST FREQUENT CO!4BINATIONS OF TWO PARAMETER CLASSES*

% OF TOTAL LATERAL
SLOPE POPULATION PARAMETER CLASS COMBINATIONS

23 Broad Shelf Rise
20 RIse Passive Divergent
19 No-Bottom Class. Intra-ocean Ic
18 Terrigenous Deformed Sed./Sod. Rks
18 Rise Sigmoldal Rough
17 Ocean Plateau Intra-oceanic
16 Forearc Region Deformed Sed./Sed. Rks
16 Broad Shelf Terrigenous
16 >50S Biogenic Intra-oceanic
16 Trench Forearc Region
15 Indian >50% Blogenic
14 Trench Forearc Region
14 Trench Deformed Sed./Sed. Rks
14 Terrigenous Slgmoldal Rough
13 Rise Truncated Sed./Sed. Rks
12 Terrigenous Passive Divergent
12 North Pacific Terrigenous

12 Ocean Plateau >50% Blogenic
12 Broad Shelf Slgmoldal Smooth
12 Broad Shel f No Outcrop

12 Broad Shelf Truncated Sed./Sed. Rks
12 RIse No Outcrop
11 Indian No Bottom Class.
11 Terrlgenous Forearc Region
11 Passive Divergent Truncated Sed./Sed. Rks

10 Indian Ocean Plateau
10 Indian Rise
I0 South Pacific >50% Blogenic

10 Narrow Shelf TerrIgenous
10 Rise Terrigenous
10 Rise Slgmoldal Smooth
I0 Rise No Outcrop
10 >50% Blogenic Passive Divergent

10 Passive Divergent Slgmoldai Smooth
10 Passive Divergent Sigmoidal Rough
10 Passive Divergent No Outcrop
10 Passive Divergent Truncated Sed./Sed. Rks

*for Parameters 1-3, 6, 8-10 (lables II and 1II)
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FIGURE 9. Correlation coefficients for numerical scale parameters.

Significant correlations at the .05 level occur for slope and

relief, outcrop frequency an6 slope, and outcrop frequency

and sediment size.
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Slope-Relief Index

Mean slope and relief values were calculated for all parameter

class subpopulations and are listed on Plate I. (A parameter-class sub-

population is a group of all the stations which exhibit a specific pa-

rameter-class designation.) The mean values of each subpopulation were

plotted on a graph with axes of slope and relief. Most subpopulations

reflect the positive correlation between slope and relief, and mean

values plotted close to the regression curves indicated on Figure 10.

Subpopulation means were compared to the means for the total population

of lateral slopes, and the resulting comparisons were the basis for de-

fining the slope-relief index.

Figure 10 illustrates the constraints and derivation of the slope-

relief index. Arbitrary boundaries for designation of indices were

formulated as follows:

1. The average slope-relief values were plotted for all subpopula-

tions and the total slope population.

2. A small but arbitrary range around the global means was assigned

to designate normal slope-relief indices. The small range was chosen to

include only a small number of subpopulation means.

3. Crude regression curves were drawn based upon the average values

for the total slope and relief ranges of discrete groupings. Two curves

resulted: one for x/y and one for y/x. It is assumed that mean values

for subpopulations which plot near these curves indicate the positive

correlation between slope and relief. Therefore, small windows were

arbitrarily assigned using the regression curves as boundaries for

extreme values and the normal range for values near the global means.

High slope, high relief designations are enclosed to the right of the
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FIGURE 10. Correlation graph of slope and relief. See text for

explanation of slope-relief index.
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normal designation, and low slope, low relief designations are to the

left.

4. Subpopulations which have mean values outside the correlation

window have anomalous influence by either slope or relief. Such subpopu-

lations are designated as low slope, high slope, low relief or high

relief.

5. Parameter class subpopulations are listed in Table V and in

Plate II according to their assigned slope-relief indices. The index is

useful in determining variation of both slope and relief in relation to

a third parameter.

Parameter Sequence by Slope-relief Means

Slope and relief means for subpopulations offer clues as to the

nature of parameter grouping. It was discovered that parameter-clas-

subpopulations which make up a single parameter often plot in distinc-

tive trends on slope-relief axes. Shape parameter class subpopulations

plot in a linear sequence which represents the positive correlation

between slope and relief. The mean values established a sequential

order for the shape groupings. This order ranges from low slope, low

relief to high slope, high relief, and groupings are listed as follows:

SHAPE PARAMETER CLASSES

sigmoidal smooth increasing slope-relief
step
sigmoidal rough
complex
abrupt smooth
abrupt rough
high relief

The positive correlation of slope and relief is well reflected in group-

ing of three parameters: shape, top province, and active elements of
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plate-tectonic association. On the the other hand, certain parameters

have ordered parameter classes which reflect variation with slope only.

These parameters are bottom province, passive elements of plate-tectonic

association, and outcrop type. Surface-sediment size has obvious se-

quence due to variation with relief only. Surface-sediment type group-

ings plot well with normal ranges and show little variation with slope

and relief. In summary, the basis for grouping was found to correlate

with five arrangements of slope and relief:

I. both slope and relief in a positive linear trend

2. only slope, no variation with relief

3. only relief, no variation with slope

4. no variation with slope or relief

5. random variation with slope and relief.

Table VI shows sequence of selected parameters.

Variation Matrix

The variation matrix (Plate II) illustrates the results of several

studies of parameter-class subpopulations. It shows the relationships

that each subpopulation has with all other data parameters. Relation-

ships are defined by relative and absolute associations.

Relative Associations

When a subpopulation and the global population have equivalent data

distributions, the subpopulation is representative of the global popula-

tion. More likely, however, the distributions will be different. Figure

11 illustrates the comparison of the North Atlantic subpopulation to the
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TABLE VI. PARAMETER SEQoENCE BY SLOPE-RELIEF MEANS

Slope-rel Ief Dependence

TOP PROVINCE SHAPE ACTIVE PLATE ASSOCIATION

LS,

LR Broad Shelf Slgtoldal Smooth Outer Trench Wall
Ocean Plateau Step Remnant Arc

No Top Class. Sigmoldal Rough

Complex Active Translation

Narrow Shelf Abrupt Smooth Backarc Wall
HS, Island Abrupt Rough

HR High Relief Forearc Region

Slope Dependence

BOTTOM PROVINCE OUTCROP TYPE PASSIVE PLATE ASSOCIATION

LS Rise Diapirs Passive Translation
No Bottom Class. No Outcrop Passive Divergent

Truncated Sad.
Trench AcoustIc Bsm Apparent Passive

Trough Crystal line Bk. Intra-oceanlc

HS Reef

LS (low slope), LR (low relief), HS (high slope), HR (high relief)
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global population for top and bottom province parameters. Obvious dis-

tribution differences are that North Atlantic slopes have higher fre-

quencies of broad shelf, rise, ard troughs, and lower frequencies of the

remaining parameter class desigiations. It can be inferred that the

North Atlantic has positive associations with higher frequency parameter

classes and negative associations with those of lower frequency.

Based upon inspection of distributions of all parameter class sub-

populations as compared to the global population, an arbitrary variation

scheme was devised to assure a standard definition of positive and nega-

tive associations. Where the frequency of a subpopulation designation

exceeds 50% of the same designation for the global population, the sub-

population has a significant positive association with that parameter

class designation. For example, Figure 11 shows that the broad shelf

designation for the North Atlantic exceeds 50% of the same designation

for the global population. (The 50% limit is noted by line A, Figure

11.) Conversely, where the percentage is 50% less than the global fre-

quency, the subpopulation has a significant negative association (see

line B, Figure 11A). A neutral association falls between in the 50-150%

range. In summary, North Atlantic slopes have positive associations with

broad shelves and rises, negative association with ocean plateaus, the

no-top classification, and trenches and neutral associations with the

remaining parameter class designations. Figure lIB shows the format for

depicting associations on Plate II.

Absolute Associations

Absolute associations are a measure of extreme parameter- class

percentages within a subpopulation. If an individual parameter-class
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FIGURE 11. Comparison of North Atlantic slopes with global slopes.

Comparison is shown for top and bottom provinces.

A. Derivation of relative and absolute associations.

B. Representation of associations for the Variation

Matrix (Plate II).
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designation represents 0% or greater than 50% of the total subpopula-

tion, the occurrence is noted on Plate II by O's and X's, respectively.

The cut-off percentages enable the following statements to be made:

I. No stations o: tnle subp,,pulation exhibit a certain parameter

class designation.

2. The majority of the subpopulation stations exhibit a specific

parameter-class designation.

On Plate II, absolute associations refer to parameter-class subpopula-

tions listed on the B axis.

Supplemental Information

The following supplemental information is shown on Plate II for

each parameter-class subpopulation:

I. the percent of the total lateral slope population which belongs

to each subpopulation

2. a percent ratio of the number of profiles/number of stations to

determine how representative the profile data base is

3. the slope-relief index

4. the difference of mean slope from the global mean of 3.8'

5. the difference of mean relief from the global mean of 3.04 km

6. the difference of mean outcrop percent from the global mean of

38%.

Interpretation

The variation matrix enables the formulation of a step-wise evalua-

tion irr each parameter-class subpopulation. Procedures fo- each evalua-

tion are similar. Each subpopuJation has a listing of positive, nutral,
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and negative associations which reveal its relationships with other

parameters. The listing for the North Atlantic follows:

Positive Neutral Negative

broad shelf narrow shelf diapiric ocean
outcrop plateau

rise trough island no top class.

active translation all surface no bottom fore-arc
sediment types class region

abrupt rough back-arc remnant arc intra-
oceanic

step sigmoidal rough sigmoidal crystalline
smooth outcrop

truncated sed. abrupt rough complex acoustic
basement

reef prograded trench
(no outcrop)

Absolute Associations

X 0

broad shelf none
rise
passive divergent

The listing provides a source to characterize the slopes of the North

Atlantic. The positive associations reveal the characteristics which

occur more frequently in the North Atlantic than in the world as a

whole. The negative associations reveal the opposite. Neutral associa-

tions indicate similarities to the world as a whole. On the basis of

absolute associations, it can be stated that the majority of North

Atlantic slopes have broad shelves, rises and passive divergent tectonic

association.
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An interpretation of the North Atlantic association is offered.

Top provinces are dominated by broad shelves. Ocean plateau and no top

classification are less frequent ,han the world average. Passive diver-

gent and active translation are -)referred plate tectonic associations.

Rises dominate as the bottom province largely due to absence of

trenches. All surface sediment types are well represented. All shapes

are represented but abrupt rough and step types are more common than the

world average. Preference of outcrop type is for truncated sedimentary

rocks at the expense of crystalline and acoustic basement. Slope angle,

relief and outcrop percent are all similar to world averages.

The North Atlantic shows most variation for boundary provinces and

tectonic association. Conversely, it shows conformity to global averages

for surface sediment type, slope angle, relief and outcrop percent.

North Atlantic associations are very different from those of the

South Pacific where most variation is caused by bottom province, surface

sediment type, shape, outcrop type, and relief (Plate II). The South

Pacific conforms to global averagea for top province and slope angle.

Much interpretation can be derived from the variation matrix, and

the potentially voluminous outpourings are beyond the scope of this

thesis. The matrix is offered as a tool for defining relationships.

Natural Slope Groups

The concept of natural groupirg is ambiguous. Ideally, an infinite

amount of representative data which are accurately weighted are analyzed

in a multidimensional fashion. For the present study, available data are

not weighted, and analyses are restricted to two or three dimensions.
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Consequently, the attempt at natural grouping for this study is far from

complete.

The basis for natural grouping is depiction of positive associa-

tions derived from Plate I. The method is to plot parameter-class

designations which exhibit significant positive associations and connect

the designations to all other designations which have common associa-

tions. Single designations were plotted only once, and clustering was

obvious by arranging the position of the designation in its most ordered

position in relation to other designations.

Figure 12 shows a hypothetical grouping of slopes. Only parameters

1-6 and 8-10 (Tables II and III) were used because other parameters have

either incomplete or poor data sets. Plotted parameter classes have sim-

ultaneous occurrence of significant positive associations and pcsitive

absolute associations. Two strengths of association were noted. The

stronger occurs when two or more parameter-class subpopulations share

greater than 50% of each others' stations reciprocally. This relation-

ship is the basis for the cores of each natural group (Figure 12). The

weaker relationship occurs when one subpopulation shares over half its

stations with another, but the sharing is not reciprocal. This relation-

ship is often caused by the disparity of the subpopulation sizes.

Four clusters of parameter classes are obvious on Figure 12.

Boundaries between the clusters take the form of single high population

parameter classes which overlap two clustered groups. Terrigennus

sediment is the overlap between Groups I and II, trench for groups II

and IV, and no-top classification for Groups III and IV.

Approximate sizes assigned to the groups (Figure 12) were derived

from frequencies of core parameter classes from the global distrihitilm
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FIGURE 12. Natural slope groups for the strongest associations. Groups

are based upon clustering of strongest positive associa-

tions. Parameter class designations are weighted by size of

subpopulations and strength of association. Arrows indicate

direction of association. Four groups are indicated.
.1
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(Tables II and III). Actual size of each group is unknown; however, it

can be assumed the minimum size of each group is at least half the aver-

age core frequency, as defined b,' absolute associations. The actual

size should be significantly larger, depending upon the criteria used to

define variation among the groups.

Group I centers around the rise- broad shelf -passive divergent

core, and terrigenous surface sediment is dominant. Because all other

associations are directed toward the core populations, each parameter

class represents variation which is not necessarily true of the majority

of Group I stations. The majority of stations for sigmoidal smooth,

prograded sediment, truncated sediment, diapirs, Arctic, and Antarctic

are contained in each of the core subpopulations. Truncated sediments

are associated with the North Atlantic, whereas diapirs are most fre-

quent in the South Atlantic. Stations with low slope angles are most

frequent for rise stations, and passive translation stations are prefer-

red for rise and broad shelf. The Arctic is best characterized by abrupt

smooth shape and prograded sediments, whereas the strongest traits of

the North Atlantic are broad shelves and passive divergent plate-

tectonic association.

Group II's core consists of fore-arc region-trench-deformed sedi-

mentary rocks-island. Terrigenous sediment dominates for all core

parameter classes except island. The core classes have slope-relief

indices in the high relief range. High relief is further supported by

the strong association of the greater than 4000 m stations to the core

parameter classes. Active trans;ation occurs as a variation in Group

II.
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Group III centers around the intra-oceanic - ocean plateau cores

which are associated with the no-bottom classification. The intra-

oceanic subpopulation has dominance of greater than 50% carbonate sur-

face sediment, and most ocean plateaus are found in the Indian Ocean.

Group IV, the smallest group, clearly focuses on the outer trench

wall which has domindnce of pelagic clay sediment, sigmoidal rough

shape, a no-top classification, a trench bottom, and a North Pacific

location.

The natural grouping was expanded by including the remaining posi-

tive relative associations from Plate II. Three types of association

are considered for the expanded grouping. The stronger two were used to

derive Figure 12. The third consists of all the weakest positive asso-

ciations which greatly outnumber the stronger ones. As with the first

grouping, all parameter-class designations were plotted with lines drawn

to represent association. Clustering for all associations is more com-

plex than the clustering shown on Figure 12. Consequently, tie lines

were generalized and arrows were omitted for depicting the grouping on

Figure 13.

Four similar groups are apparent on Figure 13, but the additional

parameter classes add a great deal of overlap. Parameter classes listed

in a group have associations with others in the same group or with any

of the overlap designations connected to the group by tie lines. Overlap

designations have associations with any of the parameter classes con-

nected to them by tie lines. Parameter-class designations listed in a

group have the greatest preference to that group, and overlap designa-

tions are preferred to any number of groups.
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FIGURE 13. Natural slope groups for all positive associations. Groups

are based upon all positive associations indicated on Plate

II. Parameter class designations are weighted by strength

of association and size of aubpopulations. Designations

listed within a group can have associations with others in

that group or with overlap designations tied to the group by

arrows. Overlap designations can have associations with

others in any group or overlap which connects with arrows.
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Although it is not obvious in Figure 13, the grouping scheme

exhibits clustered ranges for average slope angle, relief and outcrop

percent. Figure 14 is a plot of all mean slope and relief values for

subpopulations of parameter classes of each natural group. Designations

were weighted as to size of population and strength of association.

Clustering of values is obvious for the four groups and no overlap

values exist. Values of the strongest associations in each group were

extracted from Plate I and listed as ranges for average values for each

group on Table VII. Sequence of groups was established from the average

values. By increasing slope angle, sequence is Group I, Group IV, Group

III and Group II. By increasing relief, sequence is Group IV, Group I,

Group III, and Group II; and by increasing outcrop percent, it is Group

IV, Groups I/III, and Group II. Group II has consistently higher and

further removed values for all three parameters. The other groups have

more similar averages, but clustering still separates them into

distinctive groups. No obvious clustering was noted for parameter

classes which overlap natural groups.
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FIGURE 14. Slope-relief means for natural groups. Average slope and

relief are for parameter class subpopulations which compose

each of the natural groups of Figure 13. Size of the symbol

indicates the strength of association and relative size of

populations involved. Largest symbols indicate populations

greater than 20% of the total. Smallest symbols indicate

populations which are less than 92 or associations which are

weak. Groups are clustered on slope-relief axes with no

overlap. The clustering indicates that slope and relief

play a strong role in the natural grouping. Average values

for "core" parameter classes are listed in Table VII. Also

listed are parameter class designations which correspond to

numbers on Figure 14.
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TABLE VI i. NATURAL GROUP MEANS

KEY TO PARAMETER CLASSES ON FIG.RE 14, AND AVERAGE VALUES FOR SLOPE, RELIEF,

AND oUTC'iuP % FOR NATURAL GROUPS

GROUP I GROUP I GROUP III GROU
P 

Iv

Parameter Class Parameter Class Parameter Class Parameter Class

1 Rise 1 Forearc I intra-oceanic I Pelagic clay

2 Broad Shelf 2 Def. Sod. RK. 2 Ocean Plateau 2 Outer Trench

3 Passive Div. 3 Trench 3 No-Bottom Class Wall

4 1-2* Slope 4 Island 4 >50% Blogenlc

5 >1000 m sed. 5 >4000 m Relief 5 Indian

Thickness

6 Passive Trans. 6 High-Rel lef 6 Remnant Arc

Shapes

7 Diapir Outcrop 7 Active Trans.

8 Antarctic 8 Silt

9 Arctic 9 Narrow Shelf

10 Diapir bsm. 10 4-8' slope

11 North Atlantic 1 >3' slope

(minus Car Ibbean)

12 400-1000 m Sd.

Thickness

Avg. Slope 2.7-2.9* 5.3-5.4 °  
3.0-4.0' 2.9-3.b*

Avg. Relief 2.5-2.6 kn 4.1-4.5 km 2.5-3.1 Km 2.0 K

Avg. Outcrop% 27-33% 50-64% 26-45% 18-27%
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EVALUATION OF CONICAL 
SLOPES

For this study, conical slopes are the sides of ocean features that

resemble circles or ellipses in map view and have a maximum top-of-slope

dimension of less than 100 km. Approximately 25% of all large-scale

ocean slopes are conical slopes; however, they are poorly studied and

only a brief evaluation is offered In contrast to the extensive treat-

ment of lateral slopes. In order to establish continuity between the

two studies, discussion of conical slopes follows a similar outline as

that used for lateral slopes.

The morphology of conical slopes was evaluated for slope angle,

shape, and relief. Slope angls exceed 40 for nearly all conical

slopes, as determined by irrasuring contour spacings of representative

seamounts from unpublished NAVOCEANO bathymetry at a scale of I"=I °

longitude. Conical slopes are much steeper than lateral slopes, whir -

have an average slope of 3.8'. The steepness is reflected in the high

occurrence of abrupt type shapes as opposed to sigmoidal. Roughness was

not evaluated. Average relief for North Pacific and North Atlantic con-

ical slopes are 3412 m and 2901 m, respectively (Bracey, 1981). These

values are remarkably similar to lateral slope averages of 3427 m and

2956 m for the same ocean sections. Consequently, no obvious variation

was found for relief of conical slopes.

Definition of top and bottom provinces for conical slopes is fairly

simple. Top provinces are inalog(,us to the no-top classification or the

island parameter classes. Bottom provinces are either the no-bottom

classification, trough, or rise.



77

The scarcity of terrigenous input greatly influences sedimentation

on conical slopes. By definition, the top-of-slope boundary province

for conical slopes is extremely small and usually submerged so that

fluvial or glacial input is negligible. Hemipelagic materials may occur

on conical slopes, but sedimentation rates are much lower than for

slopes with terrigenous sediment. Sediment is thin and mass movement of

sedimentary strata, particularly slumping, is present on a much dimin-

ished scale. Modification of sediments by currents dominates on conical

slopes, and effects are scouring of slope sediments and deposition of

base-of-slope sediment wedges characterized by dunes and current struc-

tures (Taylor and others, 1975). Erosional canyons are also less common

on conical slopes. Their absence can be attributed to lack of sediments;

however, slope gullies are ubiquitous.

Biogenic sediments are significant on conical slopes. Pelagic

carbonates are common to the carbonate compensation depth (CCD), and

pelagic Foraminifera and nannoplankton dominate. In warm waters, carbo-

nate reefs may grow in shallow depths on the tops of subsiding volcanoes

(Menard, 1964). The shallow water carbonates accumulate at the base of

the slopes, in erosional channels on slopes, or behind dam structures.

Shallow water spillover carbonates are not common on intra-slope areas

(Moore and others, 1976). For very thick carbonate caps, reef material

forms the basement of the slope for depths less than 1400 m (Menard,

1964).

In the absence of carbonatc sediments due to depth btlow the CCD or

geography, various other types of sediment are possible. Biogenic silfca

may be significant on lower slopes in equatorial regions (radiolaria),

or in high latitudes (diatoms) (Lisitzin, 1972). Amounts of hemipelagic
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sediments are determined by proximity to terrigenous sources or cur-

rents. If hemipelagic and biogenic sediments are absent, then sedimen-

tation is likely to be extremely slow or absent, and red clay sediments

may be present as thin patchy accuulations.

For the most part, sediment is very thin on conical slopes. Rarely

should thickness approach the 200 m outcrop depth used for lateral slope

characterization. Ponded or current modified sediments might reach up to

600 m (Taylor and others, 1975) on the lower flanks or behind dams, but

such occurrences are not the rule. In most cases, conical slopes exhibit

basaltic basement outcrop for the top 200 m of shallow structure.
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CONCLUSIONS

Interpretation of Natural Groups

Conclusions are based upon natural slope groups for lateral slopes

(Figure 13) and analogous information concerning conical slopes.

Group I slopes are continental slopes of passive rifted margins.

They have broad shelves, rises, terrigenous surface sediments and com-

plex sedimentary structure. Morphology is characterized by smooth

shapes, a low average relief range (2.5-2.6 km), and the lowest average

slope range of any natural group (2.7-2.9*). Most outcrops in the upper

200 m are sedimentary, and an average range of 27-37% of the slope has

outcrops. Group I slopes are dominant in the North Atlantic (excluding

the Caribbean), the Arctic, and the Antarctic Ocean sections. Only

Group III slopes have ocean section preference as strong as those cf

Group I.

Group II slopes include the remaining continental slopes and island

arc slopes. The only major link to Group I slopes is the presence of

terrigenous surface sediments. Morphologically, the slopes have the

highest averages for slope angle (5.3-5.4*) and relief (4.1-4.5 km).

These extreme values are linked to plate tectonic association. Subduc-

tion related slopes have highest relief, whereas translation related

slopes have comparable slope angles but lower average relief (3.1 km).

The tops of slopes are islands and narrow shelves, and bottoms are

trenches. Outcrop types are deformed sediments/sedimentary rocks and

pinnacles of oceanic basement. Outcrop percent is the highest of all

groups at 50-64%. Shapes generally exhibit greatest roughness of all

groups, and a variety of forms are possible.

-i - " i- __
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Group III slopes are intra-oceanic and lack terrigenous sediments.

Surface sediments are >50% carbonate, and outcrop type is predominantly

oceanic basement. Sediment is thinner than that of Group I slopes. How-

ever, despite thin sediments, outcrop percent is low (18-27%). Group III

slopes are dominant for the Indian Ocean, and they are also common in

the Caribbean and South Pacific. They have many similarities to Group I

slopes. Relief values are similar (2.5-3.1 km) and slope angles are

slightly higher for Group III slopes (3.0-4.0°). The steeper slopes are

reflected in the higher occurrence of abrupt type shapes; however,

slopes are as smooth as those of Group I. Reefs are present on both

Group III and Group I slopes and they are not likely for other groups.

Group IV includes a small percent of all slopes. The slopes are a

significant exception to those associated with active plate-tectonic

association of Group II. Group IV slopes are outer trench walls which

have a low average relief (2.0 km), a moderate slope angle range (2.9-

3.60), a low average outcrop-percent range (18-27%), acoustic basement

for outcrop type, sigmoidal rough shape, and pelagic clay surface

sediment.

Relationships among parameters are apparent in the natural group-

ing. Top province, bottom province, and plate-tectonic association have

the strongest affinity for each other, and grouping is biased for these

parameters. Surface sediment type clusters best with ocean sections

(Plate II), and it contributes to grouping in ways different from the

other three parameters. Although cutcrop type best infers plate-tectonic

association (Plate II), it is ambiguous in the natural grouping. Shapes

cluster poorly with all parameters and have little influence in the

grouping. Similarly, slope angle and relief have little influence in
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forming natural groups, but the results show outstanding clustering of

mean values for parameters composing the groups (Figure 14).

Conical slopes resemble Group III slopes for top province, bottom

province, plate-tectonic association, surface-sediment type, outcrop

type and shapes. Both conical slopes and Group III slopes are oceanic

features, and they lack terrigenous sediment sources. The major dif-

ference Is that conical slopes are steeper.

Methods for Characterizing Specific Aspects of Slopes

The natural slope grouping is necessarily general, and it may be

irrelevant to specific needs for slope classification. Consequently,

methods were developed to characterize and classify specific aspects of

slopes. These methods were drawn from the various data and the data

base.

Plate I is a useful tool for generating classifications based upon

two parameters. Matrices are illustrated for all combinations of two

parameters and corresponding parameter classes. A global classification

can be formed by noting all high frequency combinations and disregarding

the less frequent ones. For example, 80% of all lateral slopes can be

characterized by the following parameter-class combinations for top and

bottom province:

Broad shelf-Rise (23%) No Top Class.-No Bottom Class (7%)

Ocean plateau-No Bottom Class. Island-No Bottom Class (6%)

Narrow shelf-Rise (8%) Narrow shelf-No Bottom Class (6%)

Island-Trench (8%) Narrow shelf-Trench (6%)

JI
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Sixty percent of the possible combinations are eliminated because they

are not frequent. To apply this classification to global occurrence,

one can use the data base to spec-fy locations of the selected groups,

and maps can be compiled to show the distribution of the classification

scheme.

Another method was formulated to compare and characterize subpopu-

lations of stations. Plate II shews relationships among parameters and

parameter classes, and natural groups were based upon these relation-

ships. As revealed in the analysis section, the matrix enables the

formation of a detailed characterization of each parameter class sub-

population. Comparisons were made to the global distribution of slopes.

The methods used for the variation matrix and natural grouping can

be used with the data base in expanded analyses. For exawple, geogra-

phic areas can be specified as subpopulations, and their data distribu-

tions can be retrieved from the data base. The resulting subpopulations

can be incorporated Into the variation matrix, and they can be charac-

terized by other parameters in relation to the global distribution. An

alternative is to establish othnr mean population distributions and

construct a variation matrix based upon them.
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APPENMIX I

Bibliographies

Two bibliographies are offered. First is a bibliography for general

slope topics which are not directed toward specific geographic areas.

The second bibliography presents slope studies that deal with specific

locations. Fourteen ocean quadrants are outlined on an index map, and a

separate bibliography corresponds to each quadrant.
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APPENDIX II

Line Drawings of Seismic and Bathymetric Profiles

Profiles are adjusted to uniform scale with a vertical exaggeration

of 10:1. Traces of the sediment-water interface and selected horizons

were digitized from published studies. A digitized data base for the

profiles was formed. Results are the profiles of this appendix. Sources

for profiles are given at the end of the appendix. Order of profiles

corresponds to the index map (Map IV).
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Ky to Slope Profiles
- Sea Level

- Water-Sediment iterface (Se Bottom)

a Diagramatic interpretation of seismic structures (Note: The position of the lines do not
necessarily represent actual seismic structure except for deepest reflector)

.**".. Actual seismic structure interpreted to be diapiric soh or shale.

Actual seismic structure interpreted to be reef material.

--- Actual seismic reflection planes interp-eted to be time boundaries between sedimentary units.

Abbreviated age levels are:

0 Quaternary (end of) Pa Paleocene (Note: Age abbreviation labels
represent the age of sedimentary

T Tertiary (end of) K Cretaceous units when located between

N Neogene Ku Upper Cretaceous reflection planes.)

P1 Pleistocene KI Lower Cretaceous

P Pliocene Mz Mesozoic

M Miocene Pz Paleozoic

E Eocene A A Horizon

O Oligocene

Where two labels ore hyphenated (ie. M-E), the time boundary dates between the two ages.

- Acoustic Basement- deepest actual acoustic reflector interpreted to be acoustic basement

- Crystalline basement- Acoustic reflector interpreted to be either oceanic
or continental crystalline material

1.91 Interval velocity in km/sec.

191 Average acoustic vocity (km/sec) for a designated unit.
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PRO ILE SOURCES

Profile # Source

I. ARCTIC

1 Renard and Mascle (1974)

2 Johnson (1975)

3 Johnson and others (1975)

4-5 Grant (1975)

6 Ostenso (1974)

7 Grantz and others (1975)

II. ANTARCTIC

1-3 Anderson and others (1979)

4-11 Anonymous (1975)

12 Houtz and others (1972)

13-14 Anderson and Markl (1972)

15 Houtz (1974)

16 Anderson and others (1979)

17-18 Houtz (1974)

III. MEDITERRANEAN

i Nairn and others (1975) p.
10 1

2 Ryan and Cita (1978)

3-6 Biju-Duval and others (1974)

7-8 Maldanado and Stanley (1979)

IV. EAST ATLANTIC

1-6 Talwani and Eldholm (1974)

7-8 Roberts (1974)

9-10 Baily (1975)

11 Roberts (1974)

12-16 Baily (1975)

17 Roberts (1974)

18-20 Dingle and Scrutton (1979)

21 Blundell (1975)

22 Renard and Mascle (1974)

23-27 Montadert and others (1974)

28 Renard and Mascle (1974)

29-32 Montadert and others (1974)

33-40 Uchupi and others (1976)

41-44 Seibold and Minz (1974)

45-46 Uchupi and others (1976)
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Profile # Source

47 Seibold and Hinz (1974)

48 Uchupi and others (1976)

49 Seibold and Minz (1974)

50-52 Uchupi and others (1976)

53 Seibold and Minz (1974)

54 Uchupi and others (1976)

55 Seibold and Mnz (1974)

56 Uchupi and others (1976)

57 Seibold and Minz (1974)

58-60 Uchupi and others (1976)

61-63 Emery and others (1975s)

64-48 Schlee and others (1974)

69 Delteil and others (1974)

70-71 Schlee and others (1974)

72 Delteil and others (1974)

73 Emery and others (1975a)

74 Delteil and others (1974)

75 Renard and others (1974)

76 Delteil and others (1974)

77 Emery and others (1975a)

78 Mascle and others (1974)

79 Renard and Mascle (1974)

80-84 Emery and others (19
75a)

85 Driver and others (1974)

86-88 Emery and others (1975a)

89 Renard and Mascle (1974)

90-92 Emery and others (1975a)

93 DuPlessis and others (1972)

94 Renard and Mascle (1974)

95 Emery and others (1975)

96-100 DuPlessis and others (1972)

101-103 Emery and others (1975)

104-110 Emery and others (1975a)
111 Uchupi and others (1975)

112 Lowrie and others (1978)

V. WEST ATLANTIC

1 Talwani (1974)

2-5 Featherstone and others (1977)

6-8 Talwani (1974)

9-10 Keen and Keen (1974)

11 Talwani (1974)

12 Keen and Keen (1974)

13 Watts and Steckler (1979)

14 Jansa and Wade (1975)

15-16 Austin and others (1980)

17-20 Schlee and others (1979)

21 Watts and Steckler (1979)

22-29 Schlee and others (1979)

30-31 Sheridan and others (1979)

32-35 Talwani (1974)
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Profile # Source

36 Fink (1972)

37 Talwani (1974)

38 Fink (1972)

39 Peter and Westbrook (1976)

40 Talwani (1974)

41 Ladd and others (1977)

42 No profile

43 Silver and others (1975)

44 Case (1974)

45-46 Silver and others (1975)

47-54 Case (1974)

55-56 Talwani (1974)

57-59 Dillon and Vedder (1973)

60 Worzel and Burk (1979)

61 Garrison and Martin (1973)

62-63 Worzel and Burk (1979)

64-67 Garrison and Martin (1973)

68-71 Milliman (1979)

72-83 Fainstein and Milliman (1979)

84-86 Leyden and others (1976)

87-90 Milliman (1978)

91 Lonardi and Ewing (1971)

92-93 Barker (1972)

94 Ludwig and others (1979a)

95 Barker (1972)

96 Ludwig and others (1979a)

97-98 Barker (1972)

99-102 Ludwig and others (1979a)
103-105 Heezen and Johnson (1965)

106 Johnson and others (1977)

107 Tucholke and Mountain (1979)

108 Taylor and others (1975)

VI. EAST PACIFIC

1-7 Rabinowitz and Cooper (1977)

8 Sychev and Snegovsky (1976)

8a-1 4  Scholl and others (1968)

15-16 Buffington (1973)

17 Sychev and Snegovsky (1976)

18-22 Grow (1973)

23 No profile

24-25 Von Heune (1979a)

26 Seely (1979)

27 Seely (1977)

28-32 Von Heune and others (1979)

33-36 Chase and others (1975)

37-44 Barnard (1979)

45-47 Kulm and Fowler (1974)

48-61 Silver (1971)

62 Curray (1965)

63 Blake and others (1978)
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Profile # Source

64 Blake and others (1978)
65-66 Curray (1965)
67-72 Moore (1972)
73 Blake and others (1978)
74-80 Moore (1973)
81-83 Karig and others (1978)
84 Karig (1977)
85 Seely (1979)
86-88 No profiles
89-104 Kulm and others (1977)
105 Scholl and others (1977)
106 Kulm and others (1977)
107 No profile
108-113 Herron and others (1977)

VII. WEST PACIFIC

1 Buffington (1973)
2-6 Unpub. LDGO data, R/V ROBERT

CONRAD 14
7-8 Minayev and Suvorov (1974)
9 Scientific Party (1980)
9-14 Ludwig and others (1966)
15 Moore and others (1976)
16 Hilde and others (1969)
17-18 Jacobi and Mrozowski (1979)
19-21 Sychev and Snegovsky (1976)
22-27 Ludwig and others (1975)
28-31 Herman and others (1979)
32-34 Bowin and others (1978)
35 Karig (1973)
36 Bowin and others (1978)
37 Karig (1973)
38 Bowin and others (1978)
39 Karig (1973)
40-41 Emery and Ben-Avraham (1972)
42 Karig (1973)
43 Emery and Ben-Avraham (1972)
44-46 Karig (1973)
47-49 Emery and Ben-Avraham (1972)
50 Bowin and others (1978)
51-58 Emery and Ben-Avraham (1972)
59 Parke and others (1971)
60-62 Emery and Ben-Avraham (1972)
63 Mizano and others (1979)
64-91 Fisher (1974)
92 Karig and Mammerickz (1972)

93 Fisher (1974)
94-95 Luyendyk and others (1974)
96 Fisher (1974)
97 Luyendyk and others (1974)
98 Karig and Mammerickz (1972)
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Profile # Source

99 Luyendyk and others (1974)

100-101 Karig and Mammerickz (1972)
102 Fisher (1974)
103 Karig and Mammerickz (1972)
104-110 Lonadale (1975)
ill Hawkins (1974)
112 Fisher (1974)
113-115 Hawkins (1974)
116-117 Katz (1974)
118-127 lloutz and others (1967)
128 Bentz (1974)
129-131 Andrews and Eade (1973)
132-139 Silver and Moore (1978)
140 Rea and Naugler (1971)
141 Greene and others (1978)
142 Davies and othere (1972)

VIII. INDIAN

1-4 Anonymous (1975)
5-6 Emery and others (1975)
7 Kolla and others (1980)

8-10 Dingle and others (1978)

11 Anonymous (1975)
12 Bunce and others (1967)
13-19 Anonymous (1975)
20-22 Ross and Schlee (1973)
23-25 White and Klitgord (1976)
26-27 Anonymous (1975)
28-30 Harbinger and Bassinger (1973)
31-32 Anonymous (1975)
34-38 Anonymous (1975)
39 Bunce and others (1967)
40-42 Anonymous (1975)
43-48 Houtz and others (1977)
49-53 Anonymous (1975)
54 No profile
55-59 Anonymous (1975)
60-62 Curray and others (1979)
63 Anonymous (1975)
64-66 Curray and others (1979)
67-70 Anonymous (1975)
71 Karig (1977)
72-77 Anonymous (1975)
78-79 Jacobson and others (1979)
80-82 Anonymous (1975)
84-86 Anonymous (1975)
87-89 Veevers (1974)
90 No profile
91-93 Talwani and othes (1979)
94 Anonymous (1975)
95-96 Talwani and others (1979)
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Profile # Source

97 Boeuf arnd Doust (1975)

98 Talvani and others (1979)

99 Boeuf and Doust (1975)

100 Houtz and Marki (1972)

101-105 Boeuf and Doust (1975)



181

VITA

James Andrew Green was born January 18, 1952, in Athol,

Massachusetts. In 1974, he received a Bachelor of Science

Degree in Geology from the University of Massachusetts. From

1974 to 1976, he was employed by the National Oceanic and

Atmospheric Administration in Rockville, Maryland, and in

Kings Point, New York. He has been employed since 1976 as a

marine geologist for the Naval Ocean Research and Develop-

ment Activity In Bay St. Louis, Mississippi.

Mr. Green enrolled in the Graduate School at the Uni-

versity of New Orleans in 1981, and he is a candidate for

the degree of Master of Science in Earth Sciences.



UNCLASSIFIED
%ECUAUTY CLASSIFICATION OF TN41S PAGE (When, Dae. Entered)

REPORT DOCUMENTATION PAGE- BFREDI3RCIN

2, GO'VT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

4 TILE (nd Sbtite) 1. TYPE OF REPORT & PERIOD COVERED

Large-Scale Ocean Slopes 6 EFRIGOG EOTNME

7. AuTHOm~s) I. CONTRACT OR9 GR~ANT NUuIER(s)

J.A. Green
J.E. Matthews

I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL EMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Ocean Research and Development Activity
NSTL Station, Mississippi 39529 62759N

I I. CONTROLLING OFFICE NAME AND ADDRESS t2. REPORT DATE

Naval Ocean Research and Development Activity 1,M R 1983 GE
NSTL Station, Mississippi 39529 187
14. MONITORING AGENCY NAME & ADDRESS(iI different, from Controlling Office) IS. SECURITY CLASS. (of this report)

IUNCLASSIFIEDIf. 0ECL ASSIFICATION/ DOWNGRAIDING
SCmEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution Unlimited

I7. DISTRIBUTION STATEMENT (of the abect entered In Bloch 20, it different from Report)

IS. SUPPLEMENTARY NOTF.3

If. KEY WORDS (ContInu* an reverse *Ide If necesary and Idenify by' block nminbe,)

ocean slopes boundary province
lateral slope parameters sediment type
global data distributions
plate-tectonics

20. ABSTRACT (Coninuae on revere side if necessar and Identify. by block aembor)
Large-scale ocean slopes have continental- slope dimensions (e.g., slope inclina-

tions exceeding 10 for relief of 2000 in). Approximately 40% are related to contin-
ental margins, 40% to features with oceanic crust, and 20% to unknown origins or
overlap with the first two groups. Of the slopes, 75% are laterally continuous
(lateral slopes), and the remaining 25% form the sides of conical shaped features.

Groupings and ranges have been established for the following- lateral slope
parameters; ocean section, top boundary province, bottom hounvlary province,

DD 1~ 1473 COITION OF I NOV 65IS O8SOLEfTE UNCLASSIFIED
SA 00-L-04661StCURITY CLASSIFICATION OF 'MIS PAGE611 ea.Ie~



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Me",.. Da Rntervl)

(Continued from Block 20)

relief, slope angle, surface-sediment grain size, plate-tectonic association, shape,
outcrop type in the upper 200 m, percent of slope with outcrop. sediment thick-
ness, and basement type. Mapping and computer adaption of parameter compil-
ations reveal global data distributions, global averages, parameter relationships,
and applied classification methods. Global iverages are 3.80 for slope angle,
3035 m for relief, and 38% for percent of s pe wit outcrop. Strongest relation-
ships occur among top boundary provin bottom boundary province, plate-
tectonic association, and surface-sediment type.

Preferred clustering of parameter relationshfjps reveal four model groups for
lateral slopes. Group I center around strong association of broad shelves, rises,
and divergent plate-tectonic association. Group II includes high-relief slopes
associated with subduction and high-angle slopes associated with translation.
Group Ill contains the slopes of oceanic features and carbonate surface sediments.
Group IV, the smallest group, includes outer trench walls.

UNCLASSIFIED

SECURITY CLASSIICATON O
r

T1is PAGE(Mon Data &BtoD.,



TOP BOTTOM SURFACE SURFACE
BOUNDARY BOUNDARY TOTAL AVERAGE SEDIMENT SEDIMENT
PROVINCE PROVINCE RELIEF SLOPE ANGLE TYPE GRAIN SIZE

C,*-0
=j auc

C n
-~ -~ w

C" -nc 7 n c-c.
LUJ CD CC-) EEoE L..

- -C c= <x~.2 ~ . ~E E oc c n =C m c

m. t El w c cmr-:- <
_;. C=~ C= C= C= Lu cc C o

m D= CI--- C C A C= CL) C25 ; CE -4 -4 M Lr'jCD 14 -~r F CI
*2684 1 2.7

~I24257 2.2
- - - 1920 2.8 -

I2517 3.1
-2822 4.0

* 3724 4.1

2780 3.6

12631 1IlZ4.8
___2508 LLLI3.0

4239 5.8
33051 4.3

. 2651 2.8

2755 3.8
2873 5.6

4511 5.2
77_ 60 2.7

Co - - =~ = *1 c

Cc~J m~ m ~ M Cn M C CN m~ cn

7.7-

4.6

3.3

2.6.



/I p

SURFACE
SEDIMENT PLATE-TECTONIC OUTCROP TYPE - PARAMETERS

GRAIN SIZE ASSOCIATION SLOPE SHAPE IN UPPER 200m

0L3

_ L.). . --

.2 CJ 
C

-U

--- 03 . ,= - _ , o o 0=3 .03= =0303=

cc . --
-- 8 - -LEEE2 

aE -

CD "D C- -o a- C2 C n _ __J, 0 M dtrana n

LL 8 =M D 9 CL) CD E 0 3 .

C, - - 2~i; CD CL Cl E_ E .... W--- Notmt ni

"3 -) sout Pa i c

Co _- cii.i~ -_ -..... -- C 03 Q _- - 0 No TpCasfcto

c - Eo 2 2 .0 1 0 30W-C

I 0L C)7 0.9 .5 co a) EEn
0/ -- - 2o -C 7) L ., Coa PARAMETER C

-_ L- r CO AVERAGE OUTCROPFR
....- i - , ' ,1 Antarctic

-20 Arctic
- - -- > ----- 30 Mediterranean and Blac

-29 South Atlantic
....... .... 1. - - i . . '__48 North Atlantic

-"53 South Pacific
36 North Pacific

~iiLL 26 Indian

ii~ II - 22 No Top Classificatio

- -~- H~l 77138 cean Plateau
LEZtIIZlL~iV~'~_ __ _65 Island

49 Narrow Shelf
-t.131 Broad Shelf

- 45 No Bottom Classificat'oL~i'L~59 Trough
3 rench

1 1 33 Rise

C' C ) - = W- MD L r-. a C,U) C4 )_ CD CC~ C - M~ C" CC L- r,)
r__ ~~ ~ ~ ~ C CmC .rc c mc - AVERAGE RELIEF (in)

? 000699
T L40 600Dm991,z'z -11 ( K52 50900-5999m

I39 4000- 49'4lri
_43 3000 399,

&A ~~~ me W- IR I 1P A aC l qC



AD Al'28208 GLBAL ANALYSIS 0F THE SI-ALLOW GEOLOGY OF LARGE-SCALE 3
I OCEAN SLOPES U) NAVAL OCEAN RESEARCH AND DEVELOPMENT

ACTIVITY NSTL STATION MS J A GREEN ET AL. MAY 83

UNCLASSIFIED NORDA-TN-197 F/G 8/10 NL

EEEEEEIIIIIEEEhEEEllhEEEEEE
EIEIIIIIIIEEEE
IIIIIIEEEEEIIE



11111 11.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A



OP TYPE PARAMETERS

R 00

E F
orz

-CCCJP ARAMETER CLASSES .

w M W a AVERAGE OUTCROP FREQUENCY N%
1-11 Antarctic

1-20 Arctic0
-30 Mediterranean and Black Seas
-28 South Atlantic L

148 North AtlanticZ
-53 South Pacific 4

{ 6North PacificC.
* 126 Indian0

(J 22 No Top Classification ~Uj
11~ 38 Ocean Plateau
1 -65 Island
LLL 49 Narrow Shelf
1 1 Broad Shelf 0O.

V ~ f 45 No Motom Classification
~31 Trough

33 Rise

C04 0 -AVERAGE RELIEF (in)
------- ? Z OOm

1 40 flU-6999in
- 52 M-599MccU

39 4000-4999mn1.~
A43 30J-00

36 2W1 -2999

- - M .. W "-,



2801-

- 7.1 .-

6.2

5.
4.7 i
3.3 -

Frequency Matrix for Combinations
of Two Parameter Classes

KEY
i20%

10O-19%
M 5-9% Percent of Total
= 2-4% Population of Slopes
=J1%
L Fraction

Plate I

.... ... .lil I../



C-" C.. -w c- ERAGE4

LL --- -j I ? >-70Gm

L~. .- - -I an----'-M2

-7 1

-18 Pelagic C
FT 1 54 >50%

- 33 > 50%Lit 47 30-50%
- 35 Terrig

? ' No Data

S- 32 Passive

--- -- -- -- ~.38 lntraO0
--- -- -- -- 38 Appa

.... 49 ActiveT
? Remnant.

S88 Back
-2Outer T

~64 Simple
- --- -- -~ 41 Complex

- - -- - - - - - ? No

-~52 High R
38 High

... ... 54 Stop
152 CaC m

30Abrupt
* ~~1 - --- lSig

-Sigm



AVERAGE RELIEF Win

40 U-6999M
1 52 5000-5999M L

a 4000-4999M U
43 WI00399w o
X 2001-2909m

- * 932 2000m

Ui~ ~ ~ c U- 4 : A MEAN AVERAGE SLOPE (DEGREES)

51 4-7.9El
36 2-390
27 1z

Pe.....la 5% gic Carbonate and Silica U14 L33 > 50% Carbonate
J47 30-50% Carbonate

LL35 lerrigenous

? No Data CZ
- A I i28 Clay ZUT1 1 39 Clayey Silt

1 ., 38 Passive Translation
- 1 32 Passive DivergenceC3

- 38 Apparent Passive in Megasuture Zone --
.... 49 Active Translation J

---- ---- ? RemnantArc o
8- SBack Arc

- --. - . 27 Outer Trench Wall
- - -- 1 z64 Simple Forearc Region

- - .. 47 Complex Forearc Region

I? NjOData
152 High Relief Complex

.,1"A38 No Relef Step le
54Step

- - ~ 52 Conplx
30 Abrupt Smooth
U6 Abrupt Rough
12 Sigmoidul Rough /

-- - Sigmokda Smooth



VARIATION MAT

Variation of Each Parameter Class Subpopulation to the Dist7

PARAMETER - TOP
OCEAN SECTION PROVINI

CuM

0 ~ a ,.

0~ co

a V .2 2 1o W
C/ Ci) R - cc a,

PAAMTE C1 §. §.-e -'
India 2n cc ~

, South Atlantic 9 25 LS,LR -0.7 l-0.5 ]-9[ ]]]]].Illl l
SMediterranean and Black Seas 3 8 iLS,LR -1.0 -II-8I __ ]l][

,, Arctic 41 5 ILS,LR -1.6 -0.6 -18 - - - - -_

Antarctic 6 10 LSLR -. 1 -0.4 -37
Caribbean 6 129 1 HS +1.6-0.81 +18
North Atlantic (minus Caribbean) 6 41 NLS.R -0.9 .- +8 0
Broad Shelf 27 24 LSLR -. 0 -0.4] -7 =

C Narrow Shelf 22 18 IHSHR +0.5 4-0.9] +11 - -l - ] .i]
Island 17 16 HR l+2.0l+1.2l +27[ :]Ocean Pateau an2d B 12 LS,LR -. 8 -. 51 -
No Top Classification 14 7 LR -1.0 -0.4 -16

8 Rise 34 23 LSLR -1.1 -0.4 -5
a Trench 18 21 HR 1.41+1.5 -1 [

Trough Allni 5c HS 1+1.8 -0.2 +2 1
; No Bottom Classification 37 42 LS.LR 0 [-0.34 -7

,9! F- 0 "slnd17 13 - -1.2 -1.5-6
Ocean999 Plta_0 1 SI 08-.

t- isem 144 16 S -0.5 -0.5 -2
S3000-3e99m 12328 - +0.4 +0.5 45
> T4000m 15 S l1 .- 02.3 +216 46 '111,

.. 1-is. 24 17 - -2.3 -0.1 -11 --

c 2-390 31 19 - -0.8 -0.3 -2 }
6 c 4-720 35 15 - 4.Z2 +0.5 +13 -

W)_> L 11 14 - +12 1+0.7 +26 _ II-1
ts Terrigenous 38 22 N -0.3 +0 1 -3 I1 I -

Lu 30-50% Carbonae 22 17 N +1.2 0 +9
S>50% Biogenic Carbonate and Siica 34 12 N 0 -5 I- 11]ix 14 12R -10 -20

.. .... ..... .. ... .. . ...--....... . ... .4 11. i j L_ L ,, .i aLR ~e . l r, ' , ,



VARIATION MATRIX

pulation to the Distribution of the Total Lateral Slope Population
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D Frequency of subpopulation exceeds 150%
of frequency for total lateral slope population.

Frequency of subpopulation is 50-150%
L of frequency for total lateral slope population.

D , Frequency of subpopulation is less than 50%
of frequency for total lateral slope population.

D No comparison made.

- 50% of subpopulation (indicated by parameter
classes in column A coincides with subpopulation
indicated by parameter classes in column B.

"C No stations exhibit parameter class designations.

-Note: The first three key designations indicate relative comparisons of subpopulations
- to the total lateral slope population, The final two designations are absolute

-ni and specify strongest or weakest associations between parameter class topics.

-I No value gi N where only profile stations were used.

2 Characterization of average slope and relief values in relation to average values for all
- - - - [] ]lateral slopes. N-normal slope relief values, LS- low slope values, HS- high slope

valuus, LR- low relief values, HR- high relief values.
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-[ - Note: The first three key designations indicate relative comparisons of subpopulatons
- - to ;.id total lateral slope population. The final two designations are absolute

and specify strmgest or weakest associations between parameter class topics.

- - - - I No value giv" vvhere only profile stations were used.

2 Characterization of average slope and relief values in relation to average values for all

lateral slopes. N-normal slope relief values, LS- low slope values, HS- high slope
values, LR- oW relief values, HR- high relief values.

_ _l{ - ~Average slope value for a subpopulation minus the average value
for the total lateral slope population (3.80).

4 Average relief value for a subpopulation minus the average value
_ I for the total lateral slope population (3.035KM).H llliE =

Average outcrop percent for a subpopulation minus the average value
for the total lateral slope population (38%).
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Illustration by Reneh A. Edman
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ned slope areas have average slope inclinations exceeding 10 for a 2000m range
Slope ranges indicate average inclination for the steepest 2000m relief range.

dopes resemble walls and continue for great lengths. Conical slopes form the
conical features which have a maximum top dimension of 100km. Discrete

ire insignificant and extend for less than 100km along sides of various oceanic

6 Slopes were determined from unpublished Naval Oceanographic Office
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Sediment Type

[LJ Terrigenous + +

~ 30-50% carbonate

1 Greater than 50% carbonate

Pelagic clay

S Indicates biogenic silica comprises
wo greater than 10% of the sediment.

Illustration by Renei A. Edman
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Major Sources:
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